eBook

Scaling and
Auto-Scaling Strategies
for

Fiorano



DISCLAIMER
No Al was used in the production of this work



Audience & Objectives

Introduction

Containerization versus virtualization
Scaling versus Auto-Scaling
Horizontal versus virtual Scaling
Quality of Service (QoS)

Using Containerization to scale and auto-scale
cloud-native applications

A User Journey
Scaling and Auto-Scaling Strategies
In Conclusion

About Fiorano

10

Ll

15

18

19




Audience:

e CIO, CTO
e IT Leaders
¢ Digital Business Leaders

¢ Digital Product Leaders

e Business Architects

e Application Architects

Objectives:
Estimated read time:

N o mins
e Understand containerization vs virtualization 8

e Understand scaling vs auto scaling
o How to use containerization to auto scale

cloud-native applications



London weati

The cloud-native model provides the framework or blueprint for
developing applications explicitly designed for the cloud. This
model is made up of microservices architecture,
containerization, orchestration and automation, and load-
balancing. It must be resilient and self-healing, scalable and
elastic, as well as stateless and API-driven. Lastly, the cloud-
native model aims to maximize cost efficiency, scalability, and
flexibility, providing organizations with the ability to develop and
deploy applications more rapidly and respond quickly to
changing business requirements.

Undoubtedly, cloud computing and the computing-as-a-service
(cloud-native) model are innovative, forward-looking

technologies providing users with the option of dynamic,
dependable, resilient computing, including aspects such as:

An emphasis on Quality of service (QoS)
Highly scalable and highly available software applications

Cost-effective resources without the need to buy and
maintain physical infrastructure



While the cloud-native model offers users almost unlimited resources such as
CPUs, memory, persistent storage, and network at competitive prices, it must
be effectively managed at an application level to fully leverage these
resources and ensure optimal performance, reliability, and cost-effectiveness.

As described throughout this text, cloud-native applications are designed to
take full advantage of the cloud infrastructure and servers. However,
effectively managing them requires careful consideration of aspects such as
scaling and auto-scaling, monitoring and alerting, performance optimization,
security and compliance, and container orchestration.

While every one of these aspects is imperative to effective cloud-native
application management, this article’s core focus is scaling and auto-scaling
strategies for cloud-native applications. The ability to scale a cloud-native
application is based on the principles of containerization and virtualization as
the cornerstones of cloud-native computing.

Let’s continue this discussion by examining each concept and its fundamental
differences, the difference between scaling and auto-scaling, the types of
scaling (horizontal and vertical), and what the concept, Quality of Service
(Qos) is before looking at several strategies used to implement scaling and
auto-scaling cloud-native applications.




In summary, containerization and virtualization are
technologies used to deploy and manage software
applications in the cloud; however, they differ in
isolation and resource utilization. In a sense,
containerization is a form of virtualization, but it
differs from traditional virtualization in several key
aspects. Both technologies aim to create isolated
environments for running applications but do it
differently.

In traditional virtualization (or hardware
virtualization), a hypervisor (software that creates
and runs virtual machines) runs on top of the
physical hardware and allows multiple VMs (virtual
machines) to run on top of it. Each virtual machine
emulates the underlying hardware and includes its
own operating system and kernel. In other words,
multiple operating systems can run on the same
physical server, effectively creating separate
virtualized environments.

On the other hand, containerization is a type of
operating system-level virtualization. It doesn’t
simulate the entire physical machine, just its
operating system. Therefore, containerization
allows multiple containers to share the same host
OS kernel, which provides isolated user spaces for
each container.

In a traditional sense, containers package an
application and its dependencies, libraries, and
configurations needed to run the application. In
the cloud-native context, applications comprise
many different microservices, each
encapsulating a single business function. Each
microservice and its dependencies, libraries, and
configurations are packaged in a single
container. Each container encapsulates a single
function, but all the containers share the host
operating system kernel, resulting in a lower
resource overhead than traditional virtual
machines.



Auto-scaling and scaling are related
concepts in terms of managing resources
to meet the demands of an application or
system. They differ, however, in their
approach and degree of automation.

Note:

In this article’s context, scaling refers to
adjusting the number of containers
and the hardware resources needed
by each container, such as CPU, RAM,
networking, and disk space.

DevOps teams manually
scale these resources
based on their current
workload assessment.
The team may decide to
increase (or scale up)
the number of
containerized
microservices containing
a specific business
function if an
application, such as an
eCommerce store's
checkout process,
experiences increased
traffic. The team will
scale back these
containers when
demand decreases to
meet the lower demand.

V/S

On the other hand, auto-
scaling is an automated
process where the
system adjusts its
resources dynamically
based on predefined
rules or metrics. The goal
of auto-scaling is to
match the available
resources with the
current demand,
allowing the system to
scale up or down
automatically as
needed.




There are two types of scaling: horizontal scaling and
vertical scaling. The most significant difference is that
horizontal scaling adds more virtual machines,
containers, or nodes to a system. In contrast, vertical
scaling adds more resources (CPU, RAM, networking,
and storage) to an existing container, machine, or
node. In other words, horizontal scaling horizontally
implies scaling out, whereas vertical scaling indicates
scaling up.

In the containerization context, horizontal scaling adds
additional containers to handle an increased workload,
while vertical scaling adds more resources to a specific
container to handle the extra workload.




The research article “QoS-aware resource scheduling using whale optimization algorithm for
microservice applications” describes containerizing microservices as a “structural approach
where multiple small sets of services are composed and processed independently with
lightweight communication mechanisms.”

According to the authors of this paper, when deploying and maintaining a cloud-native
application, it is mandatory to stick to the accompanying service level agreement (SLA) with an
uptime usually of 99.999%. The best way to meet these SLA requirements is to implement what is
known as a Quality of Service-aware algorithm to find the best resources when deploying
containerized microservices.

Containerization and QoS are related in that containerization provides a level of isolation and
resource allocation for containerized applications. For instance, you can define resource limits
and QoS settings for different containers or groups of containers in container orchestration
platforms such as Kubernetes.

A robust orchestration and management system (like Kubernetes) is essential to ensure the
efficient deployment and management of these microservices.

Note:
Kubernetes is one of the most popular container orchestration platforms that can handle these
tasks effectively.


https://onlinelibrary.wiley.com/doi/10.1002/spe.3211

As described above, containerization forms the core
of all cloud-native scaling (and auto-scaling)
strategies. Therefore, let’s dive into this topic by
looking at the following use case.

You are the founder of a mental health MedTech
start-up with an app that helps users focus on their
mental and emotional well-being by offering
evidence-based digital self-help as well as the ability
to book virtual appointments with a psychologist. This
app can be divided into the following microservices
or independent services that communicate with each
other to form the application:

Each microservice is packaged in its own container
and exposes an APl to communicate with the other
microservices. The user ID is typically passed between
APIs as it is the primary key or part of a foreign key for
each table in the linked database.

User authentication service

Digital self-help service

Mood tracking and journaling service
User progress tracking service

Virtual appointment booking service
Secure video conference service
Community support service

Reminder and notification service
Integration with wearable devices service
Payments and billing service

Data privacy and security service



Now that we have a list of services, let’s look at a user journey to see how each microservice interacts
with each other.

Note:
For this discussion, we will limit each microservice to one user.

The starting point: Log into the App

For ease of application, let’'s assume you are the user. And your starting point is a web-based GUI
(graphical user interface) where you can log into the app.

Note:
This web page functions as the start-up’s home page and the entry point for the application.

When you click the Sign In button, the user authentication service starts and authenticates you.

12



Record Your Mood in Real Time and Journal

Once you have logged into the app, the next step is to use the mood
tracking and journaling service to log your mood and journal for the
day. When you click this menu option, the container containing this
microservice spins up, passing your user ID from the user
authentication service.

The user authentication service has completed its job, so it spins down.

Book a Virtual Appointment

After journaling for the day, the next step is to book a virtual appointment
with your psychologist and log out.

The microservice used here is the virtual appointment booking service.
Note:

When you log out of the app, the container management platform spins
down all the containers containing the microservices you used.




Appointment day

The next time you log into the app is to attend your scheduled virtual appointment. The same sign-in process

occurs as described above. The only difference is that you'll open the secure video conference service to chat
virtually with your psychologist. Once finished, you'll log out again.




Scaling and Auto-Scaling Strategies

Now that we've looked at a simple user journey, the next step is to use this user journey to consider
several scaling and auto-scaling strategies, ensuring each containerized microservice is deployed and
scaled independently when required, using QoS metrics to meet the stated uptime in the accompanying
SLA.

Note:

We cannot reiterate enough that scaling and auto-scaling strategies are critical, making sure each
microservice can handle varying workloads efficiently and promoting flexibility, cost-effectiveness, and
maintainability.

Here are several strategies for scaling and auto scaling each microservice independently:

HORIZONTAL SCALING

Consider implementing horizontal scaling for microservices that handle user
interactions, such as authentication, digital self-help, mood tracking, and
journaling. This strategy involves deploying multiple instances of the same
microservices and using a load balancer to distribute incoming requests.

As stated above, each microservice can only service one user’s requests in our
use case. Therefore, the same number of container instances must be spun up
for each additional user and vice versa. In other words, as the user base grows,
you can add more instances to handle the increased traffic.




CONTAINER ORCHESTRATION

Use a container orchestration platform like Kubernetes to manage and
automate the deployment, scaling, and management of your microservices.
Kubernetes provides built-in auto-scaling capabilities, allowing you to set up
rules to automatically scale the number of containers based on metrics such
as CPU utilization or request rate.

AUTO-SCALING RULES

Set up auto-scaling rules based on performance metrics for each
microservice. For example, if the virtual booking service experiences high
demand during certain hours, configure the auto-scaling rule to increase the
number of instances during these periods.

SERVERLESS FUNCTIONS

For microservices with intermittent or low-resource utilization, consider
implementing them as serverless functions instead of containerized
microservices. Serverless computing platforms automatically manage the
scaling and provisioning of resources based on incoming requests, saving
costs, and simplifying infrastructure management.



DATABASE SCALING

Ensure that the database used by your microservices is capable of scaling
independently. Use cloud-based databases with auto-scaling capabilities to

handle increasing storage and read/write operations as the user base grows.

It is also a good idea to consider adding an instance of the database behind
each microservice to prevent performance bottlenecks.

MICROSERVICE DECOMPOSITION

If a particular microservice becomes a performance bottleneck, consider
decomposing it into smaller, more specialized microservices. This allows you
to scale individual components independently and optimize resource
allocation.

17



As seen throughout this text,
implementing scaling and auto-scaling
strategies is mandatory to ensure that
your cloud-native application can
effectively handle fluctuating workloads,
ensure efficient resource utilization, and
maintain the requisite QoS standards,
resulting in a reliable, resilient, highly
available, resource-effective, and cost-
effective application.

Moreover, the practical use case
describes how dividing your application
into containerized microservices, you
can develop, deploy, and scale each
component independently, promoting
flexibility, maintainability, and ease of
development, ensuring that the
application executes as optimally as
possible.




_ ABOUT FIORANO

Enabling Change at the Speed of Thought

Fiorano is a cloud-native event-driven microservices platform
that combines integration, low-code, and eiPaaS capabilities
to build and deploy global hybrid multi-cloud applications.

By making business processes event driven, Fiorano helps
enterprises achieve massive scalability, responsiveness, and
increased productivity.

With Fiorano, companies can respond better in volatile
markets and deliver exceptional customer and employee
experiences.

Drop us a line:

X info@fiorano.com

© 2023 Fiorano Software Pte. Ltd. All Rights Reserved.

AN X
" www.fiorano.com | Fiorano Software @ @°FioranoGlobal


https://www.fiorano.com/
https://www.linkedin.com/company/19105/admin/
https://twitter.com/FioranoGlobal

